Kinetics of Thermal Decomposition of a Spirooxindole Compound under Non-Isothermal Condition

Ganesan Nalini¹, N. Jayachandramani ¹, V. Thanikachalam²*, J. Jayabharath², G. Manikandan² and Radhakrishnan Suresh ³

¹Department of chemistry, Pachaiyappa’s college, Chennai-6000030, India.
²Department of chemistry, Annamalai University, Annamalainagar-608002, India.
³Department of chemistry, Presidency college, Chennai-600004, India.

*Corresponding Author, Email: pvta1998@yahoo.co.in, Phone: +91 4144239523

Received: November 22, 2015 Revised: January 26, 2016 Accepted: January 29, 2016 Published: January 29, 2016

Abstract: A spirooxindole compound, namely 2’-amino- 6’-(1H-indol-3-yl)-2-oxospiro[indole-3,4’-pyran]-3’, 5’-dicarbonitrile (AIOIPD) has been synthesized and characterized by microanalysis, FT-IR, mass spectrum and NMR (¹H and ¹³C) techniques. The thermal decomposition of the compound was studied by thermogravimetric analysis under dynamic nitrogen atmosphere at different heating rates of 10, 15, 20 and 30 K min⁻¹. The kinetic parameters were calculated using model fitting (Coats–Redfern, CR) and model–free methods (Friedman, Kissinger–Akahira–Sunose, KAS and Flynn–Wall–Ozawa, FWO). The decomposition process of AIOIPD followed a single step mechanism as evidenced from the data. Existence of compensation effect is noticed for the decomposition of AIOIPD. Invariant kinetic parameters are consistent with the average values obtained by Friedman and KAS inconversional methods.

Keywords: Spirooxindole, pyrrolidine, 2’-Amino- 6’-(1H-indol-3-yl)-2-oxospiro[indole-3,4’-pyran]-3’, 5’-dicarbonitrile, thermal decomposition, model fitting, model free methods

1. INTRODUCTION

Functionalized nitrogen-heterocycles play a predominant role in medicinal chemistry and they have been intensively used as scaffolds for drug development. Multicomponent reactions (MCR) have emerged as a powerful tool for delivering the molecular diversity needed in the combinational approaches for the preparation of active compounds [1]. The spirooxindole framework [2], represents an important structural organization present in a number of bioactive natural products, such as coerulescine, horstiline, welwitindolinone A, Spirotryprostatin A, [3] A natural alkaloid isolated from the fermentation broth of Aspergillus fumigates, has been identified as a novel inhibitor of microtubule assembly and the function of muscarinic serotonin receptors [4]. The 3-substituted indole nucleus substructure is one of the important heterocycles found in natural products, pharmaceuticals and is important in medicinal chemistry [5]. Its
Figure 1. Structure of AIOIPD

Figure 2A. TG and DTA Curves of AIOIPD at (a) 10 min\(^{-1}\) and (b) 15 K min\(^{-1}\) heating rates in nitrogen atmosphere.
scaffolds are found in a number of biologically active compounds with anticancer, anti-tumour [6], anti-inflammatory, hypoglycemic, analgesic and anti-pyretic activities. Many indole alkaloids are recognized as marine invertebrate metabolites for their broad spectrum of biological properties [7]. Their preparative methods suffer from tedious synthetic routes, longer reaction time, drastic reaction conditions, as well as narrow substrate scope [8]. Design and synthesis of spiro(indole-thiazolidine)spiro(indole-pyran) as antimicrobial agent has been developed [9]. Spiro cyclic oxindoles have been generated containing a six-membered spiro cyclic moiety, especially a six membered piperidine structure. These compounds have a broad spectrum of biological activities, non-peptidyl growth hormone secretagogues and potent non-peptide inhibitors, that may have utility as anticancer agents [10]. Novel dispirooxindole-pyrrolidine derivatives have been synthesized through 1,3-dipolar cycloaddition of an azomethine ylide generated from isatin and sarcosine with the dipolarphile 3-(1H-indole-3-yl)-3-oxo-2-(2-oxoindolin-3-yldene) propanenitrile and also spiro compound of acenaphthenquinone obtained by the same optimized reaction condition. Synthesized compounds were evaluated for their antimicrobial activity and all the compounds showed significant activity [11]. Non-isothermal kinetics of chitosan [12], chitin [13], cephalosporins [14], procaine and benzocaine [15] and theobromine [16] were studied in details and appropriate the decomposition kinetics models were proposed.

In this paper, we report the synthesis of 2’-Amino-6’-(1H-indol-3-yl)-2-oxospiro[indole-3,4’-pyran] -3’, 5’-dicarbonitrile (Figure1) [17] and its thermal decomposition in non-isothermal dynamic nitrogen atmosphere condition. The kinetic and thermodynamic parameters were determined using model-fitting and model free- methods.

2. EXPERIMENTAL

2.1. Materials

3-Cyanoacetyl indole, malononitrile, isatin and DMSO-d$_6$ were purchased from Aldrich Chemicals. Acetic anhydride and other reagents were procured from S.d.Fine Chemicals and were used as received.

2.2. Instruments

Elemental analyses were performed at Central Leather Research Institute (CLRI), Chennai, India. IR measurements was done as KBr pellets for solids using Perkin Elmer Spectrum RXI FT-IR. The 1H and 13C NMR spectra were recorded in DMSO-d$_6$ using TMS as internal standard with JEOL ECA-500MH$_z$ and Bruker 400-500MH$_z$ high resolution NMR spectrometer. The mass spectrum was recorded using Electrospray Ionisation Method with Thermo Finnigan mass spectrometer. Melting point was determined in capillary tubes and is uncorrected. Analytical TLC was performed on precoated plastic sheets of silica gel G/UV-254 of 0.2 mm thickness. The simultaneous TGA curves were obtained with the thermal analysis system model Perkin Elemer TAC7/DX (Thermal Analysis Controller TAC-7). The TG analysis of AIOIPD were carried out under dynamic nitrogen atmosphere (100 ml min$^{-1}$) in an Iron pan with a sample at the heating rates of 10,15,20 and 30 K min$^{-1}$ from 30 to 850°C. TGA were recorded at Indian Institute of Technology, Chennai, India. The kinetic parameters E_a and A were calculated using
Microsoft Excel Software. The sample temperature controlled by thermocouple, did not exhibit any systematic deviation from the present linear temperature programme.

2.3. Synthesis of 2'-Amino-6'-(1H-indol-3-yl)-2-oxospiro[indoline-3,4'-pyran]-3',5'-dicarbo-nitrile

To a stirred solution of isatin (0.294 g, 2 mmol), ethylcyano acetate (0.122 g, 2 mmol), 3-cyanoacetyl indole (0.368 g, 2 mmol) in methanol (20 mL) and triethyl amine (20 mol %) were added and stirring was continued. On completion, the reaction mixture was poured into crushed ice and the precipitate formed was filtered, dried and purified by column chromatography to afford the pure product. The isolated product was further purified by recrystallisation in ethanol and the yield of the product was 90%.

Elemental analysis: Calculated (%) for C_{22}H_{13}N_{5}O_{2}: C, 69.65; H, 3.45; N, 18.46. Found (%): C, 69.80; H, 3.50; N, 18.49. Pale brown solid; mp 263-265°C; Rf 0.16 (40% AcOEt/petroleum ether); FTIR (KBr): 1134, 1352, 1416, 1471, 1518, 1662, 1707, 2205, 2926, 3184, 3343 cm^{-1}; ^1H NMR (500 MHz, DMSO-d_{6}): δ 6.93 (d, J = 7.65 Hz, 1H, Ar-H), 7.09 (t, J = 7.6 Hz, 1H Ar-H), 7.09 (d, J = 6.85 Hz, 1H Ar-H), 7.45 (d, J = 7.64 Hz, 1H Ar-H), 7.61 (brs, 2H-NH), 7.94 (d, J = 8.4 Hz, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 10.75 (brs, 1H, NH), 12.06 (brs, 1H, NH); ^13C NMR (125 MHz, DMSO-d_{6}): δ 50.4, 54.7, 81.7, 105.5, 110.7, 113.0, 117.6, 117.9, 121.5, 121.7, 122.1, 123.4, 124.9, 125.7, 130.4, 132.4, 136.5, 142.1, 158.3, 160.3, 177.7; MS (EI): m/z 380.07 [M^+]+H^+.

3. THEORETICAL BACKGROUND

3.1. Model fitting method

There are numerous non-isothermal model-fitting methods, and the most popular one is the [18] method which has been successfully used for studying the kinetics of dehydration and decomposition of different solid substances [18,19]. The kinetic parameters can be derived from modified Coats and Redfern Eq. (1)

$$\ln \left[\frac{g(\alpha)}{T^2} \right] = \ln \left(\frac{AR}{\beta E_a} \left[1 - \left(\frac{2RT}{E_a} \right) \right] \right) \pm \ln \left(\frac{AR}{\beta E_a} - \frac{E_a}{RT} \right).$$

(1)

where g(α) is an integral form of the conversion function, the expression of which depends on the kinetic model of the occurring reaction. If the correct g(α) function is used, a plot of ln [g(α)/T^2] against 1/T should give a straight line from which the values of the activation energy, E_a and the pre-exponential factor, A can be calculated.
Figure 2B: TG and DTA Curves of AlOIPD at (c) 20 K min\(^{-1}\) and (d) 30 K min\(^{-1}\) heating rates in nitrogen atmosphere.

3.2. Model free methods

Friedman method [20] is a differential method and is one of the first isoconversional methods. The model in the logarithmic form is given as

\[
\frac{d\alpha}{dt} = A \exp\left(\frac{-E_a}{RT}\right) f(\alpha)
\]

(2)
The plots of \(\beta d\alpha/dT\) versus \(1/T\) (Eq. (3)), at each \(\alpha\) gives \(E_a\) from the slope of the plot.

The isoconversional integral method suggested independently by [21, 22], is based on the equation:

\[
\ln \beta = \ln \left[\frac{0.0048\ AE_a}{g(\alpha)\ R} \right] - 1.0516\ \frac{E_a}{RT}
\]

(4)

and Kissinger–Akahira–Sunose (KAS) equation [23, 24] (Eq. (5)) is

\[
\ln (\beta / T^2) = \ln \left[\frac{AE_a}{g(\alpha)\ R} \right] - \frac{E_a}{RT}
\]

(5)

Values of apparent activation energies for the decomposition of AIOIPD at different values of \(\alpha\) can be calculated. According to these equations, the reaction mechanism and shape of \(g(\alpha)\) function do not affect the values of the activation energies of the decomposition stages.

3.3. Invariant kinetic parameters (IKP) method

The invariant kinetic parameters are obtained by the method of Lesnikovich and Levchik [25]. The straight lines obtained for the plots of \(\ln A_\beta\) versus \(E_\beta\) for several constant heating rates should intersect at a point [25] which corresponds to the true values of activation energy and pre-exponential factor and they are named invariant kinetic parameters \((E_{inv}, A_{inv})\) which are evaluated using the super correlation relation Eq. (6)

\[
a_\beta = \ln A_{inv} - b_\beta E_{inv}
\]

(6)

Plot of \(a_\beta\) versus \(b_\beta\) gives a straight line [26], the values of \(E_{inv}\) and \(\ln A_{inv}\) are calculated from the slope and intercept of the plot respectively.

3.4. Thermodynamic parameters

The kinetic parameters, energy of activation \((E_a)\) and pre-exponential factor \((A)\) are obtained from Kissinger single point [24, 27, 28] kinetic method which uses the Eq. (7):
\[
\ln \left(\frac{\beta}{T_m^2} \right) = -\frac{E_a}{RT_m} + \ln \left(\frac{AR}{E_a} \right)
\]

(7)

where \(T_m \) is temperature that corresponds to the maximum of \(d\alpha/dT \). This ‘model-free’ kinetic method can be applied with a reasonable approximation without being limited to \(n \)-order kinetics [31], providing a single \(E_a \) value for each reaction step. For this reason, it is often defined as a Kissinger single point method. The reaction proceeds under conditions where thermal equilibrium is always maintained, then a plot of \(\ln \left(\frac{\beta}{T_m^2} \right) \) versus \(1/T_m \) gives a straight line with a slope equal to \(-E_a/R \).

Based on the values of activation energy and pre-exponential factor for the decomposition stage, the values of \(\Delta S^\neq \), \(\Delta H^\neq \) and \(\Delta G^\neq \) for the formation of activated complex from the reactant were calculated based on the following [29-31] equations:

\[
\Delta S^\neq = \frac{R \ln \left(\frac{A_h}{\epsilon k_B T_p} \right)}{\epsilon k_B T_p}
\]

(8)

Since

\[
\Delta H^\neq = E_a - RT_p
\]

(9)

\[
\Delta G^\neq = \Delta H^\neq - T_p \Delta S^\neq
\]

(10)

4. RESULTS AND DISCUSSION

4.1. Non-isothermal TGA

The thermogram of pure AIOIPD recorded in a dynamic nitrogen atmosphere at different heating rates of 10, 15, 20 and 30 K min\(^{-1}\) are presented in Figs 2A and 2B. They show two distinct endothermic peaks due to melting and decomposition. The thermal decomposition process of AIOIPD in three stages is observed from the TGA curves. The decomposition process for first stage starts at 150°C and ends at 275°C with the mass loss of 33.72%. The second stage decomposition starts at 275°C and ends at 550°C with the mass loss of 9.58%. The third stage of decomposition starts at 550°C and ends at 840°C with the mass loss of 17.76%.

4.2 Model-free analysis

The non-isothermal decomposition kinetics of AIOIPD is first analyzed by model-free methods viz., Friedman, Kissinger- Akahira-Sunose and Flynn Wall Ozawa. Table S1-S3 show the variation of apparent activation energy \(E_a \), as a function of extent of conversion \(\alpha \), for decomposition of AIOIPD. \(E_a \)
value increases slightly in the conversion range of $0.12 \leq \alpha \leq 0.98$ for all the stages. It was pointed out [32] that when E_a changes with α, the Friedman and KAS isoconversional methods lead to close value of E_a for all the stages. The applied isoconversional methods do not suggest a direct way for evaluating either the pre-exponential factor (A) or the analytical form of the reaction model $f(\alpha)$, for the investigated decomposition process of AIOIPD.

For the first stage decomposition of AIOIPD, the values of energy of activation corresponding to the different values of α for the decomposition process obtained by Friedman, KAS and FWO methods are listed in Table S1 (Figure S1). It is seen that E_a value depends upon the extent of conversion α. The average value of E_a is 230.76 ± 0.15 kJ/mol (KAS method). From Figure S1(Table S1), it is evident that the values of activation energy obtained by Friedman and FWO methods (229.49 ± 0.35 kJ/mol, Friedman; 227.85 ± 0.12 kJ/mol, FWO) are slightly lesser than that by KAS method.

For stage II the variation of E_a with α for the decomposition is shown in Figure S2 (Table S2). The average value of E_a is 328.26 ± 0.42 kJ/mol (Friedman method). From Table S2, it is evident that the Friedman method activation energy is higher than the values of activation energy obtained by KAS ($E_a=312.85 \pm 2.89$ kJ/mol) and FWO ($E_a=318.21\pm2.96$ kJ/mol) methods.

For stage III, the values of apparent activation energies obtained by Friedman and KAS methods are higher than that of FWO method. The average values of E_a in the range $0.12 \leq \alpha \leq 0.98$ are 439.35 ± 0.22 kJ/mol (Friedman), 439.30 ± 0.47 kJ/mol (KAS), and 433.97 ± 0.57 kJ/mol (FWO)(Table S3, Figure S3). From the average values of E_a for each stage, the rate of decomposition is found to depend upon the nature of the intermediate formed during the decomposition. The third stage is slower than the other stages of decomposition. The higher value of activation energy for stage III than the other stages indicates that the intermediate compounds are thermally more stable and hence the decomposition process is slow.

4.3 Model-fitting analysis

After model-free analysis is performed, model-fitting can be done in the conversion region where apparent activation energy is approximately constant where a single model may fit. The non-isothermal kinetic data of AIOIPD at $0.12 \leq \alpha \leq 0.98$ where model-free analysis indicates approximately constant activation energy, were then fitted in to each of the 15 models listed in Tables S4,S5 and S6 for stages 1,2 and 3 respectively. As shown in Tables S4, S5 and S6, for the applied method [18], Arrherius parameters (E_a, lnA) for decomposition process, exhibit strong dependence on the reaction model chosen.

4.4 Invariant kinetics parameters (IKP) analysis

Criado and Morales [33] reported that almost any $\alpha = \alpha(T)$ or $(\text{d}a/\text{d}t)(T)$ experimental curve may be correctly described by several conversion functions. The use of an integral or differential model-fitting method leads to different values of the activation parameters. Although obtained with high accuracy the values change with different heating rates and among conversion functions.
Figure 3: Determination of A value by plotting $(1-\alpha)^{-1}$ against $E_a p(x)/\beta R$ for the decomposition of AIOIPD at different heating rates (β) (stage-I)

Figure 4: Determination of A value by plotting $0.5[(1-\alpha)^2-1]$ against $E_a p(x)/\beta R$ for the decomposition of AIOIPD at different heating rates (β) (stage-II)
Lesnikovich and Levchik [34] suggested that correlating these values by the apparent compensation effect, \(\ln A = a_\beta + b_\beta E_a \), one obtains the compensation effect parameters \(a_\beta \) and \(b_\beta \), which strongly depend on the heating rates (\(\beta \)) as well as on the considered set of conversion functions. The straight lines \(\ln A \text{ verus} E_a \) for four constant heating rates should intersect at a point (isoparametric point) which corresponds to the true values of the activation energy and pre-exponential factor. These were named as invariant kinetic parameters.

The invariant kinetics parameters method was applied to the data calculated for the heating rates 10, 15, 20 and 30 K min\(^{-1}\). The evaluation of the kinetic parameters was performed using Coats-Redfern method. For these kinetic models in the range 0.12 ≤ \(\alpha \) ≤ 0.98 for AIOIPD for all the stages, the straight lines corresponding to Coats-Redfern method is characterized by correlation coefficient values close to unity.

For several groups of apparent activation parameters, obtained by different kinetic models, we tried to establish the best combination (\(r \rightarrow 1 \)), a better resolution in determining the invariant kinetics parameters and the closet value to the mean isoconversional activation energies [35-37].

For stage I for AKM, the plot of \(\ln A \text{ versus} E_a \) has the highest correlation coefficient and is a straight line (Table S7; Figure S4). The invariant kinetic parameter \(E_{\text{inv}} = 231.53 \text{ kJ/mol} \) and \(\ln A_{\text{inv}} = 53.0 \text{ (A/min)} \) (Table S10) are obtained with \(r = 0.984 \) (Figure S4). For these group, the invariant activation energy is almost equal to 231.53 kJ/mol compared to Friedman, KAS and FWO methods (229.49 ± 0.35 kJ/mol, Friedman; 230.76 ± 0.5 kJ/mol, KAS; 227.85 ± 0.12 kJ/mol, FWO).

For stage II, a better resolution in determine the invariant kinetic parameters (Table S8). The correlation coefficient in Table S10 shows a good agreement of all kinetic models. The efficiency of IKP method is strongly revealed by AKM-{ F1} (Figure S5) and even by AKM (all kinetic models) which comprises all the best-fitting function that makes it a more powerful method. The invariant activation energy is 311.18 kJ/mol, which is close to FWO method. The invariant kinetic parameters are \(E_{\text{inv}} = 311.18 \text{ kJ/mol} \) and \(\ln A_{\text{inv}} = 60.88 \text{ (A/min)} \) obtained with \(r = 0.963 \).

For third stage for AKM- {A4 ; R2}, the plot of \(\ln A \text{ versus} E_a \) has the highest correlation coefficient (\(r = 0.978 \)) (Table S9, Figure S6). Depending upon the choice of kinetic models, the compensation effect parameters are obtained with different accuracies, their values and derived invariant activation parameters varying substantially. For AKM- {A4 ; R2}, the invariant kinetic parameters are 446.96 kJ/mol and \(\ln A_{\text{inv}} = 55.69 \text{ (A/min)} \) obtained with \(r = 0.978 \) (Table S10). For these groups, the invariant activation energy is slightly above 6 units (\(E_a = 439.35 \pm 0.22 \text{ kJ/mol} \)) and 12 units (\(E_a = 433.97 \pm 0.57 \text{ kJ/mol} \)) obtained by Friedman and FWO methods.

4.5. Thermal decomposition kinetics model determination

The most suitable kinetic model for the decomposition process of AIOIPD is F2 for stages I and III and F3 for stage II. For stages I and III, by introducing the derived reaction model \(g(\alpha) = [(1-\alpha)^{1-1} \] .

the following equation is obtained
\[[(1-\alpha)^{-1} - 1] = \frac{AE_\alpha}{R\beta} p(x) \]

(11)

The plots of \([(1-\alpha)^{-1} - 1]\) against \(E_a p(x)/R\beta\) at the different heating rates is shown in Figs. 3 and 5, and the most suitable model for the decomposition process is second order model F2.

Figure 5. Determination of \(A\) value by plotting \((1-\alpha)^{-1} - 1\) against \(E_a p(x)/R\beta\) for the decomposition of AIOIPD at different heating rates (\(\beta\)) (stage-III)

The activation energy for stage I, \(E_a = 229.49 \pm 0.35\) kJ/mol and for stage III \(E_a = 439.35 \pm 0.22\) kJ/mol and the frequency factor was found to be \(1.513 \times 10^{53}\) (\(\ln A = 53.18\)) for stage I, and for stage III \(4.897 \times 10^{55}\) (\(\ln A = 55.69\)). The obtained value of \(\ln A\) coincides with the average value of Friedman isoconversional intercept \(\ln [Af (\alpha)] = 53.34\) for stage I and stage III \(\ln [Af (\alpha)] = 54.78\). The most suitable kinetic model is F3 for stage II and is confirmed by introducing the derived reaction model \(g(\alpha) = 0.5 [(1-\alpha)^{-2} - 1]\), the following equation is obtained [38].

\[0.5 [(1-\alpha)^{-2} - 1] = \frac{AE_\alpha}{R\beta} p(x) \]

(12)

The plot of \(0.5 [(1-\alpha)^{-2} - 1]\) against \(E_a p(x)/R\beta\) at the different heating rates is shown in Fig. 4. The activation energy \(E_a = 328.26 \pm 0.42\) kJ/mol and frequency factor for stage II is \(7.586 \times 10^{60}\) (\(\ln A = \)
60.88) are determined by IKP method. The obtained value of \(\ln A \) coincides with the average value of Friedman isoconversional intercept \(\ln [Af(\alpha)] = 61.02 \).

4.6. Thermodynamic parameters

From the DTG curves, the peak temperature for AIOIPD are 509.92, 655.79 and 985.10 K. These peak temperatures are used to evaluate single point kinetic parameters [24]. The obtained values are 186.51, 558.94 and 615.26 kJ/mol for stages I, II and III respectively.

The thermodynamic parameters, \(\Delta S^\neq \), \(\Delta H^\neq \) and \(\Delta G^\neq \) are calculated at the peak temperature \(T_m \) in the DTG curves for the corresponding stage [39] since the temperature characterizes the higher rate of decomposition and therefore, it is an important parameter.

Table 1. Values of kinetic and thermodynamic parameters for the thermal decomposition of AIOIPD in nitrogen atmosphere.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_a/kJmol^\neq)</td>
<td>186.51</td>
<td>558.94</td>
<td>615.26</td>
</tr>
<tr>
<td>(\ln A/As^\neq)</td>
<td>44.13</td>
<td>103.10</td>
<td>75.08</td>
</tr>
<tr>
<td>(\Delta G^\neq/kJmol^\neq)</td>
<td>126.57</td>
<td>161.68</td>
<td>251.37</td>
</tr>
<tr>
<td>(\Delta H^\neq/kJmol^\neq)</td>
<td>182.27</td>
<td>553.48</td>
<td>607.07</td>
</tr>
<tr>
<td>(\Delta S^\neq/kJmol^\neq)</td>
<td>109.24</td>
<td>597.44</td>
<td>361.08</td>
</tr>
<tr>
<td>(r)</td>
<td>0.984</td>
<td>0.962</td>
<td>0.957</td>
</tr>
</tbody>
</table>

As can be seen from Table 1, the value of \(\Delta S^\neq \) for the decomposition is positive for all the stages. It means that the corresponding activated complexes were with lesser degree of arrangement than the initial state. The positive values of \(\Delta H^\neq \) and \(\Delta G^\neq \) show that they are connected with absorption of heat and are attributable to non-spontaneous processes [39]. The obtained \(E_a \) values coincide with invariant parameters.
5. CONCLUSION

The compound chosen for study decomposed in three stages with absorption of heat. The ‘model’ for the decomposition is F2 for stages I and III and F3 for stage II. The thermal stability of AIOIPD in the third stage is high and the corresponding energy of activation is also high compared to the other stages. The rate of the first stage decomposition is higher than the other stages because of lower energy of activation. The free energy change is positive for all the stages which indicate that the decomposition is a non-spontaneous process.

ACKNOWLEDGMENT

The authors thank Dr. P.T. Perumal and Dr. P. Thirumurugan, Organic Chemistry Division, CSIR-Central Leather Research Institute, Chennai for their fruitful suggestions and The Head, Indian Institute of Technology, RISC, Chennai for TGA–DTG measurements.

SUPPORTING INFORMATION

Tables and figures are included in the supporting information.

REFERENCES

The authors declare no conflict of interest

© 2016 By the Authors; Licensee Borderless Science Publishing, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0